3 research outputs found

    Acceleration-Induced Deconfinement Transitions in de Sitter Spacetime

    Full text link
    In this note, we consider confining gauge theories in D=2,3,4D=2,3,4 defined by S2S^2 or T2T^2 compactification of higher-dimensional conformal field theories with gravity duals. We investigate the behavior of these theories on de Sitter spacetime as a function of the Hubble parameter. We find that in each case, the de Sitter vacuum state of the field theory (defined by Euclidian continuation from a sphere) undergoes a deconfinement transition as the Hubble parameter is increased past a critical value. In each case, the corresponding critical de Sitter temperature is smaller than the corresponding Minkowski-space deconfinement temperature by a factor nearly equal to the dimension of the de Sitter spacetime. The behavior is qualitatively and quantitatively similar to that for confining theories defined by S1S^1 compactification of CFTs, studied recently in arXiv:1007.3996.Comment: 25 pages, 7 figure

    Bose-Fermi duality and entanglement entropies

    Full text link
    Entanglement (Renyi) entropies of spatial regions are a useful tool for characterizing the ground states of quantum field theories. In this paper we investigate the extent to which these are universal quantities for a given theory, and to which they distinguish different theories, by comparing the entanglement spectra of the massless Dirac fermion and the compact free boson in two dimensions. We show that the calculation of Renyi entropies via the replica trick for any orbifold theory includes a sum over orbifold twists on all cycles. In a modular-invariant theory of fermions, this amounts to a sum over spin structures. The result is that the Renyi entropies respect the standard Bose-Fermi duality. Next, we investigate the entanglement spectrum for the Dirac fermion without a sum over spin structures, and for the compact boson at the self-dual radius. These are not equivalent theories; nonetheless, we find that (1) their second Renyi entropies agree for any number of intervals, (2) their full entanglement spectra agree for two intervals, and (3) the spectrum generically disagrees otherwise. These results follow from the equality of the partition functions of the two theories on any Riemann surface with imaginary period matrix. We also exhibit a map between the operators of the theories that preserves scaling dimensions (but not spins), as well as OPEs and correlators of operators placed on the real line. All of these coincidences can be traced to the fact that the momentum lattice for the bosonized fermion is related to that of the self-dual boson by a 45 degree rotation that mixes left- and right-movers.Comment: 40 pages; v3: improvements to presentation, new section discussing entanglement negativit

    Entanglement Entropy from a Holographic Viewpoint

    Get PDF
    The entanglement entropy has been historically studied by many authors in order to obtain quantum mechanical interpretations of the gravitational entropy. The discovery of AdS/CFT correspondence leads to the idea of holographic entanglement entropy, which is a clear solution to this important problem in gravity. In this article, we would like to give a quick survey of recent progresses on the holographic entanglement entropy. We focus on its gravitational aspects, so that it is comprehensible to those who are familiar with general relativity and basics of quantum field theory.Comment: Latex, 30 pages, invited review for Classical and Quantum Gravity, minor correction
    corecore